If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t^2-16t+16=0
a = 1; b = -16; c = +16;
Δ = b2-4ac
Δ = -162-4·1·16
Δ = 192
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{192}=\sqrt{64*3}=\sqrt{64}*\sqrt{3}=8\sqrt{3}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-8\sqrt{3}}{2*1}=\frac{16-8\sqrt{3}}{2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+8\sqrt{3}}{2*1}=\frac{16+8\sqrt{3}}{2} $
| 3q–7=24 | | x2-2x-12=12 | | 10x+206x=36 | | X=87y=89 | | -4n+15=4-4n | | 7x-3x+4x=25-5 | | -19=-1x | | 5x+7=-2x+12 | | 2x+2+3.5x=180 | | 2x+2=3.5x | | 3.5x=2x+5 | | n²-12+4n+11=76 | | 50/10=20/n | | 60+3/x=2x | | 12x24=10x-2 | | 5–3x=17–x | | (x+2)(x-1)=3x | | 10+-3x=-5+2x | | n^2-3n+23=0 | | 13x+4=13x-5 | | 0.63=0.5^x | | -448=46q | | a−3=34 | | x/2-5=x/2-7 | | 2x-40=125 | | 3^{x-2}-61=6500 | | 2y-20=y+30 | | {8m-5m=-11 | | 0=7n-n2+60 | | 8m-5m=-11 | | m2-m=12 | | m2=m=12 |